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(3) All calculations are mod mi so that the digits of the mixed radix representa- 
tion of [xIM can be obtained using onily calculations mod mi. 

(4) The value x -x(a) can be obtained from .x -x(a) = x a- ) + x(a-i) - 

x(a) so that the modular niumber x need not be remembered dturing the whole 
process. 

(5) The matrices (a1j) and (xi,) are comptuted prelimiinary to the iteration 
procedure and are not part of it. 

Ohio State University 
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Generation of Permutations by Transposition 
By Mark B. Wells 

1. Introduction. As discussed by Tompkinis [1], many problems require the 
generation of all n! permutationis of it marks (henceforth called arrangements). 
This note presents a generation scheme wherebv each step consists of merely trans- 
posing two of the marks. The bookkeeping is quite simple, thus this scheme is some- 
what faster than either the usual dictionary order method or the Tompkins-Paige 
nmethod [1]. Aklso, the important property of leaving the (j + 1)st position alone 
until all j! arrangements of the marks in the first j positions have been generated 
is preserved. 

2. Notation. An arrangement of n marks will be given by an n-tuple, (mt, M2, * 

mO). A permutation, that is, ani operation of permuting an arrangement of marks, 
will be giveen in cyclic form, with P's modified by subscripts as entries. The subscripts 
indicate the position of the marks to be moved in the n-tuple on which the permuta- 
tion is operating. For example, if a = (1, 2, 5, 4, 3) is an arrangement of fivre marks 
and p = (P1P3P2)(P4P5) is a permutation, then p(a) = (2, 5, 1, 3, 4). 

The bookkeeping for this genieration scheme is handled, as in most schemes of 
this type, by an ordered set of indices tk 'k , 3 n, where each tk assumes 
the valtues 1 throutgh k and indicates the progress of the sutbgeneration of the ar- 
rangements of marks in positions 1 to k. (This is essentially the "signature" dis- 
cussed in [1].) Thus there are n! sets of valtues for the th's, onie set for each arrange- 
ment of the n marks;. The set tk = 1 for all k corresponds to the initial arrangement, 
and successive sets are formed in dictionary order (assuming increasing significance 
with increasing subscript). An index k' gives at each step the smallest subscript k 
for which tk # k. 

3. The Generation Rules. The transposition required at each step depends on 
the current value of the index k' and on the corresponding value of tk,?1(tfl? is as- 
sumed = 1). The rtules are: 
I. If k' is even, then interchange the marks in positions A;' and k' - 1. 
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II. a. If k' is odd and tk,+ 5 2 then interchange the marks in positions k' and 
k' - 1. 

b. If k' is odd and 2 < tv 1 < k'. then interchange the marks in positions k' and 
k'-t.k+1 + 1. 

c. Tf k' is odd and h'1 > M? then interchange the marks in positions k' -nd 1. 
Before provrirng that these rules yield all n! arrangem-rents in n - 1 applications 

(starting with a given arrangement), let us illustrate their application for n-.3. 
The rules apply at step s to yrield the arrangement given at step s + 1. 

Step | t. t3 ti ts tz k' | Arrangement 
1 2 3 43 

1 1 1 1 1 1 2 (1, 2, 3, 4, 5) 
2 2 1 1 1 1 3 (2, 1, 3, 4, 5) 
3 1 2 1 1 1 2 (2, 3, 1, 4, 5) 
4 2 2 1 1 1 3 (3, 2, 1, 4, 5) 
5 1 3 1 1 1 2 (3, 1, 2, 4, 5) 
6 2 3 1 1 1 4 (1, 3, 2, 4, 5) 
7 1 1 2 1 1 2 (1,3,4,2,5) 

12 2 3 2 1 1 4 (1,4,3 2 5) 
13 1 1 3 1 1 2 (1, 4, 2, 3,5) 

18 2 3 3 1 1 4 (2,4,1,3, 5) 
19 1 1 4 1 1 2 (2,473 1,5) 

24 2 3 4 1 1 (3,4, 2,1, 5) 
25 1 1 1 2 1 2 (3, 4. 2, 5. 1) 

48 2 3 4 2 1 5 (2,5 , 4, 3, 1) 
49 1 1 1 3 1 2 (2, ,4, 1, 3) 

72 2 3 4 3 1 2a 1 (4,1, ,2,3) 
73 1 1 1 4 1 2 1 (4, 1, 5,3, 2) 

* . . . * ! . . . 

96 2 3 4 4 1 I (5,3, 1,4,2) 
97 1 1 1 5 1 i (5, 3, 1, 2, 4) 

120 2 3 4 5 1 6 (1,, 43,,4) 

A close inspectioni of the above example wvill reveal the mechanism at wvork. 
Following a transposition (PiPk) with i < k all (k - 1) ! arrangements inv-olving 
change onily in positions 1 through k - 1 are generated before Pk appears agaiin. 
During a complete subgeiieration of the kI! arrangements of the k leftmost positions, 
the transposition (PiP), for some particular i < k, occuLrs k - 1 times, each time 
k' = k. The particuilar value of i wNill be k - 1, k - tk+l + 1, or 1, according to 
the rule in force. To inisuire that no duiplicate arrangements appear, the nark 
initially (at the time the subgeneration begiins) in positioln k aIad the marks suc- 
cessively (each time (PiPk) is performed) ill-position i must all b distinct. This is 
accomplished in two ways according as k is even or odd. For all example with k = 4, 
compare the marks in position 4 at step 1, and in positioln 3 at steps 6, 12, and 18. 
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LF.u~a 1.Letc of(PiAP2, *' Pik-.) with i1,i2, * * ? k - 1 bea cycle and 

letj < k. Then a[(PiPk)aIk1 = (PiPk). 
Proof. This is verified by direct permutation multiplication. 
The significance of this lemma is the folloivng. Let k be odd and consider any 

subgeneration of k ! arrangements of the marks in the k leftmost positions. During 
this subgeneration k' Xwill be equal to k k - 1 times, and we will have k - 1 identi- 
cal applications of rule IL interspersed with k identical permutations of the first 
k- 1 positions. If, as Lemma 2 will show, this permutation is a cycle, then Lemma 1 
says the effect of the entire subgeneration wvas as a single application of rule II on 
the initial arrangement. 

LEMMA 2. For k even, (PPPPk1) (P.lPk) [ ; (PiP_1) (Pk_lPk)I(Pk-2Pk-1) - 

pk, a single cycle, where P2 = (P1P2), p = (P1P4P2P3) and in general, 
Pk = (PlPkPk_2{Pk_Pk-5 ... P3} Pk-l Pk-4Pk * ... P2} ) . 

Proof. Again, direct multiplication gives verification. 
Thus for k even the effect of complete subgeneration is to permute the k marks 

by a cycle. For examples of the effects given by these two lemmas, compare the ar- 
rangements at steps 1 and 24 and at steps 25 and 48 (k = 4) and at steps 1 and 120 
(k = 5). 

Consider now any such subgeneration beginning with the arrangement, say 
(ml, M2, ... , iMk, I ... Mn). With kc even, each of the k - 1 applications of rule I 
finds a new mark to put in the kth position, since during this subgeneration tk is 
assuming the values 1, 2, - - - k, and so by the special construction of rule IL (and 
Lemma 1), position k - 1 contains successively, at the time of application of rule 
I, Mk.2, Mnk-1, iMk3 , mk-4, * * , mI . With k odd, each of the k - 1 applications of 
rule II finds the k - 1 leftmost marks permuted by a (k - 1)-cycle (by Lemma 2), 
and hence also finds a new mark to put in the kth position. A simple induction now 
shows that such subgenerations yield k! distinct arrangements. We have proved 
the following: 

THEOREM. The generation scheme as given above yields all n! arrangements of n 
marks in exactly n - 1 steps (starting from a given arrangement). 

4. Remarks. As in most other generation schemes the property of changing the 
jth mark only when all arrangements of the previous j - 1 marks have been gener- 
ated allows significant time-savings in some problems. If followNring a transposition 
(PiPk+l) with i < k + 1 the problem decides it does not need to use the k! arrange- 
ments formed by permuting the present k leftmost marks, then this subgeneration 
may be skipped by applying Lemma 1 or Lemma 2 according as k is odd or even. 
This immediately prepares the arrangement for the next application of (PiPk+?). 
The permutation of Lemma 2 is not a transposition, but is quite easy to code into 
the scheme. An inlteresting question is whether or not an equally simple generation 
by transposition scheme exists in which block skipping is also always done by 
transposition. 

With the assutmption that the marks being permutted are in most problems indices 
used for address modification, and thus should occupy the address portion of a 
computer word, a time comparison [21 between this scheme and the Tompkins-Paige 
method was made on Maniac LI. With nine marks the transposition scheme gener- 
ates arrangements about twventy per cent faster. In addition, the transposition 
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scheme is advantageous for problems in wvhich minimum mixing of the marks at 
each step is important. 
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Chebyshev Approximations to the Gamma 
Function 

By Helmut Werner and Robert Collinge 

In this note several Chebyshev approximations are given for the function 
y = r(x + 2) for x in the 0 _ x < 1.0 range. The approximatioru were obtained 
from a table of r(x + 2), employing well-known methods as described in numerous 
papers; see for instance [11 and the literature quoted there. The table of r(x + 2) 
was calculated from the asymptotic expansion of log r(z) as given in [2] to provide 
data accurate to at least 10-21. Compare also [31. 

The asymptotic expansion of In I (z) is given by 

ln I(z) = (z - 4) lnz - z + In V/27r + ?(z) 

where 

n1z r-1YB 1 

? = 2r(2r - 1) Z2Tl + Rn(z) 

and Br is the rth Bernoulli n-umber. 
It can be shown [2] that for z > 0 the value of ?(z) always lies betwveen the sum 

of n terms and the sum of (n + 1) terms of the series, for all values of n. In ter- 
minating this series with the nth term the error Rn(z) will be less than 

B,n, 1 

2(n + 1) (2n + 1) 

By truncating 41(z) at the 10th term it is easily showvn that for values of z > 13, 
the error in the expansion is less than 5.5 X 10-22. We therefore replace D(z) by 
EI0l Ai/z2j-' and calculate ln I(z) for values of z in the range 13 < z ? 14. 
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